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ABSTRACT 

Given a presentation of an n-generated group, we define the normalized 

cyclomatic quotient (NCQ) of it, which gives a number between 1 - n  and 

1. It is computed through an investigation of the asymptotic behavior 

of a kind of an "average rank", or more precisely the quotient of the 

rank of the fundamental  group of a finite subgraph of the corresponding 

Cayley graph by the size of the subgraph. In many ways (but not always) 

the NCQ behaves similarly to the behavior of the spectral radius of a 

symmetric random walk on the graph. In particular, it characterizes 

amenable groups. For some types of groups, like finite, amenable or free 

groups, its value equals that  of the Euler characteristic of the group. We 

give bounds for the value of the NCQ for factor groups and subgroups, and 

formulas for its value on direct and free products. Some other asymptotic 

invariants are also discussed. 

1. In troduct ion  

The present paper is about an asymptotic invariant of presentations of groups, 

which is an invariant of the group when it is (finite or infinite) amenable. In 

fact, this invariant, which we call the normalized cyclomatic quotient (NCQ) and 

denote by ~,, characterizes amenable groups, the same as does the spectral radius 
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of a symmetric random walk on the graph of the presentation (see [8], and also 

[4] for the connection between the spectral radius and the "growth-exponent"). 

Moreover, some of the formulas and bounds we get for the value of the NCQ on 

different group structures are similar to those valid for the spectral radius, but 

this is not always the case (see e.g. the remark after Theorem 3.1). Although the 

computation of the exact value of the NCQ is not easy and seems to be difficult 

for many kinds of presentations of groups (but good lower and upper bounds are 

sometimes easier to achieve), in some cases it may be easier than the computation 

of the spectral radius. For example, unlike the situation with the spectral radius 

(as far as we know), one does have a formula for the value of the NCQ on free 

products (see section 5). 

Given the Cayley graph of a finitely generated group G, with respect to a 

presentation G ~ with n generators, the quotient of the rank of the fundamental 

group of subgraphs of the Cayley graph by the cardinality of the set of vertices 

of the subgraphs (i.e. a kind of an "average rank") gives rise to the definition 

of the normalized cyclomatic quotient -~(G~). The asymptotic behavior of this 

quotient is similar to the asymptotic behavior of the quotient of the cardinality of 

the boundary of the subgraph by the cardinality of the subgraph. Using F01ner's 

criterion for amenability one gets that the NCQ vanishes for infinite groups if 

and only if they are amenable. When G is finite then ~(G ~) = 1/[G[, where tGI 

is the cardinality of G, and when G is non-amenable then 1 - n <_ ~(G ~) < 0, 

with -~(G ~) -- 1 - n  if and only if G is free of rank n. Thus we see that on special 

cases -~(G ~) equals the Euler characteristic of G (see [1]), but this is not the case 

in general, as can be shown e.g. for free products with amalgamation of two free 

groups. 

As said above, the value of the NCQ depends on the presentation of the group 

(unless the group is amenable). In the next section we suggest a definition of an 

invariant of the group itself, but this invariant seems to be difficult to compute 

in general. 

Most of the paper is concerned with bounds for the value of the NCQ on 

factor groups and subgroups, and formulas with respect to the decomposition of 

the group into direct and free products. In the last section we define and touch 

very briefly the balanced cyclomatic quotient, which is defined on concentric balls 

in the graph. This definition is related to the growth of G. 

Throughout the paper we assume that when we are given presentations G~' 



Vol. 99, 1997 THE NORMALIZED CYCLOMATIC QUOTIENT 287 

of groups Gi and H is a group defined through the G~, then H gets the natural 

induced presentation H a. Thus, if H is a factor of G then H a has the same 

generating set as that of the presentation G a of G with all the relations of G ~ 

holding also in H a. Or if H = G1 * G2 then the generators and relators of H a 

are the union of those of the G~ ~, assuming that the generating sets of the G~ ~ 

are disjoint. Similarly for direct products (with the appropriate commutators as 

extra relators), etc. We do not try, however, to be too precise with regard to the 

use we make of the notation G% 

The formulas we give for direct and free products serve as upper and lower 

bounds for ~(G a) in the following sense. Suppose that G~' = (Xi[ Ri),  i = 1, 2, 

and G a = (X[ R), with X = X1 U )(2 (disjoint union), R ~_ R1 U R2 and so that 

the natural maps Gi ~ G, i = 1, 2, are injective. Then 

(I) �9 _< a) _< • G 2). 

The left inequality follows from Theorem 3.1 since the Cayley graph associated 

with G a is a quotient of that associated with G~ 1 * G~ 2. The right inequality 

appears in the proof of Theorem 4.1. These bounds hold for such structures as 

semi-direct products, amalgamated products, HNN extensions, etc. One can also 

try and get exact formulas for the structures mentioned above, at least in special 

cases, but we do not get much into it in the present paper. 

We hope that the results as well as the methods of computation (e.g. building 

the subgraphs inductively from smaller subgraphs on which we know more about 

the number of cycles and vertices, often using translates of the same smaller sub- 

graph, or looking at quotient graphs, or counting cycles, edges or outer edges of 

subgraphs, according to what is convenient, etc.) will turn out to have interesting 

applications. For example, we can obtain the generating function of the growth 

of a surface group of genus n (which we were told is a known result), by adding 

inductively the basic subgraphs which are cycles of length 4n, and observing 

there are 2 types of these cycles according to whether we add 2n - 2 or 2n - 3 

new vertices (we do not have the space here to give the exact details). Another 

application is a corollary to Theorem 3.1 which is a theorem of Lubotzky and 

Weiss ([10]) about non-expander groups (see the remark after Theorem 3.1). 

We use the following terminology and notation on graphs. The set of vertices 

of a graph ~ is denoted by V(G) and the set of edges by E(~). A pa th  in 
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vertex vi-1 and terminates at v~. The length of a path v0, el, vl, e2, . . .  ,Vn is 

n. A s imple  p a t h  is a path in which the vertices along it are distinct, except 

possibly for the first and last one, in which case it is a simple closed path or a 

simple circuit. We assume that each path is reduced ,  i.e. it is not homotopic 

to a shorter one when the initial and terminal vertices are kept fixed. 

If 7/ c_ 6, i.e. 7/ is a collection of vertices and edges of the graph 6, then 

we denote by (7/) the subgraph generated by 7/. It is the smallest subgraph 

of 6 which contains H. That is, we add to 7-I the endpoint vertices of all the 

edges in 7/. On the other hand, the subgraph of 6 induced by 7 / i s  the one 

whose vertices are those of 7 / and  whose edges are all the edges which join these 

vertices in 6. An induced subgraph is a subgraph which is induced by some 

7/C_ 6. If 7/1,7/-/2 C_ 6 then 7-/1 - 7-/2 is the collection of vertices V(7/1) - V(7/2) 

and edges E(7/1) - E(7~2), and it does not necessarily form a subgraph of 6, 

even when 7-ll and 7-12 are subgraphs of 6. The b o u n d a r y  of the subgraph 7 /o f  

G is 0 7 / =  7/-/N ( 6 -  7/), and its in te r ior  is ~ = 7 / -  07/-/. The o u t e r  b o u n d a r y  

of 7t (in 6) is the set of vertices of G - :H which are adjacent to 7 / in  6. Assume 

now that each edge of 6 is labeled with some x E X in one direction and with 

x -1 E X -1 in the other direction. Then we define E x t ( 7 / )  to be the set of edges 

of 6 - 7/whose initial vertices with respect to the directions X are in 7/. 

Finally, let 3o(7/) = IY(7/)l, let 31(7"/) = IE(7/)I, and let a(7/) = I~ro(7/)l be 

the number of the (connected) components of 7-/. 

2. The normalized cyclomatic quotient 

Let G ~ = (X I R) be a presentation of a group G, with X = {Xl , . . .  ,Xn}, and let 

6 be the associated Cayley graph. If H is the normal closure of R in F = (X) 

then it is shown in [13] that  the growth function of G is equivalent to the r ank-  

g r o w t h  rkH of H. The rank-growth is defined by 

(2) rk~ (i) = rank(H/), 

where Hi is the subgroup of H generated by the elements of length _< i (with 

respect to X U X-1).  We notice that Hi is the fundamental group of the subgraph 

of 6 of all paths starting at 1 of length _< i. Thus, there exists an e x h a u s t i n g  

chain (6~) in 6, i.e. a sequence 6~ C_ 6~ C_ 6~ C_... ofsubgraphs o f f  whose union 

is 6, with all the G~ connected and finite, such that the growth of the function 

~/1(i) = rank(lrl(G~)) is equivalent to the growth of the function 72(i) = ]Y(6~)]. 
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We are now interested in the asymptotic behavior of the quotient 71(i)/'72(i), 
which is related, as we will see, to the quotient IV(Og~)]/[V(9~)I. The latter 

quotient and its analogs are known and widely studied objects in diverse areas of 

Mathematics (see e.g. the survey [9]). By F01ner's criterion (see [6]) the group G 

is amenable if and only if there exists an exhausting chain (9~) of finite connected 

subgraphs of 9 such that 

~o(O9i) = o 
(3) lim,-o~sup/30(9/) 

(recall that a group G is amenable if there exists an invariant mean on B(G), 

the space of all bounded complex-valued functions on G with the sup norm 

I[ f I1r162 see [3]). We remark that in Folner's criterion one can consider ms well 

disconnected subgraphs or boundaries of any fixed width k. Notice that (3) 

implies that  if G is non-amenable then it has exponential growth. 

Let us denote by ~2(9') the cyc lomat ic  n u m b e r  of 9 ~, i.e. the sum of the val- 

ues of rankQrl(TV)) over all the components 7"/~ of the subgraph 9 ~ (the notation 

/32(9') refers to the number of 2-cells of an associated 2-dimensional complex). 

Let us also use the following notation: 

& ( 9 ' )  
(4) ~(9') - 

~0(9') '  

(5) , ( 9 ' )  = fl :(9 ')  + 1 
,'30(9') 

We denote by .7--(G),Sr*(G).Cgv(9),CJ-'*(9) respectively the sets of finite, non- 

trivial finite, connected finite, non-trivial connected finite subgraphs of 9. Here 

a graph is non-trivial if it contains more than one vertex. 

Delinition 2.1: If C = (91 c__ 92 C . . .) ,  9 /C Cf'(9),  is an exhausting chain, let 

(6) r/c. = lim sup ~ (9i). 

Then we define the cyc lomat i c  quo t i en t  of G ~ by 

(7) --(G ~ = supr/c, C an exhausting chain, 
c 

and the no rma l i zed  cyc lomat i c  quo t i en t  of G ~ by 

(8) ~(G ~) = 1 - n + E(GO). 
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The following are equivalent definitions of __.-(G~). 

(9) E(G a ) = l - n +  sup ~((~'), 
r 

(10) -~(G~ sup 1-IEX'(g')[, 
(11) ~-(G ~') = - n +  sup U(g'), 

g'~cy(g) 

(12)  ~ ( c  ~  sup(~ ~_.(,sz#ns, )) = + - 1 S c G finite. 
s j=~ ISl ' - 

In case G is infinite then we have 

~ ) 1  ~'(Ga) = -infpecY(~) ~o(~') ' 
01(~') 

(13) ~(G '~) = - n  + sup~,ecy(~ ) 0o(0')' 

%(G~) = suPs ~ j = l  - 1 , S _C G finite. 

Clearly definition (9) gives at least the same value as definition (8). To see that 

these definitions are equivalent we need to show that for every ~ ,  ~" E .f(~) 

there exists 7-/ E C~'(~) such that ~" C_ 7-/and ((G') _< ((7-/). But this follows 

by Lemma 2.2 and by the fact that given any subgraphs G1, ~2 E -f(~), we can 

cover ~2 by the induced subgraph of translates of ~1. 

LEMMA 2.2: Let ~' E .~(~) satisfy ((~')  _> (('H') for every 1-l' C_ ~'. Let 

~" E ~'(G) such that ((G") >_ ~(~'), and let 7-l = ~' u G". Then ( (~ )  >_ ~(G'). 

Proof: 

(14) 

while 

(15) 

Clearly 

~ o ( ~ )  = Bo(~') + ~o(G") - Zo(G' n 6"),  

& ( ~ )  > &(g') + &(g") - &(G' n G"). 

Then by simple calculation we get that 

(16) ((7"/) > ((~')  

after clearing denominators in the quotients ~(F/) and ~(~'). 

Definition (10) follows by 

(17) /32(G') = 1 + (n - 1)/3o(G') - IEXt(G') [ ,  G' E Cgv(G). 
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Definition (11) follows by 

(18) ~ (G ' )  = a(G') - 3o(G') + B,(G') 

(o(G') is the number of components of G'). 

Finally, for definition (12) we notice that if G p is an induced subgraph of G and 

that  S C_ G is the set of elements of G which correspond to the vertices of ~P 

then 

(19) ]~1(~') : E ISzj N S I. 
j = l  

The slightly simplified expressions (13) when G is infinite are due to the fact 

that G ~ may be chosen as large as we wish. 

Now before we investigate ~(G~ we would like to add few remarks about 

its definition. First, we could have used the expressions (13) as defining F-(Ga). 

Then, as we will see in the next sections, the formulas for some of the structures 

would have been simpler. The reason for our choice is that we wanted to leave the 

part in the definition that makes the distinction between finite groups of different 

order, keeping in mind that when the group is infinite the two definitions agree 

with each other. Secondly, we have defined an invariant of a presentation of a 

group and not of the group itself (and we will see below some examples of the 

effect of changing the presentation of the same group on the value of ~). We 

may, however, define ~(G) by "~(G) = supc~ -:(G~ where G ~ runs over all the 

(isomorphism classes) of the presentations of G with finitely many generators 

(that is, we may assume an infinite sequence X = {Xl, x2, . . .} is given and for 

each n the n-generated presentations are with Xl, . . . ,x,~ as generators). The 

problem with this definition that it seems to be difficult to compute in general, 

although by Proposition 2.4 it suffices to consider only "minimal" presentations. 

Interesting questions would then be whether ~(G) = ~.(G a) for some presentation 

G ~ of G, or whether it may happen that ~(G) = 0 for some non-amenable 

group. Thirdly, F.(G ~ may be defined also for groups presented by countably 

many generators X = (xl,  x2,. . .}.  Let Gi : Gp(Xl, x2 , . . . ,  xi) be the subgroup 

of G generated by { x l , x 2 , . . . , x i } .  Then define ~(G ~ = limi_oo ~(G~'). This 

sequence is monotonous non-increasing and thus has a limit in the broad sense. 

In fact, the order of the generators does not affect the value of ~.(Ga). 

PROPOSITION 2.3: Let G ~ be a presentation of a group G with n generators 

and let ~ be the associated Cayley graph. Then 1 - n <_ ~-(G ~) <_ 1. Moreover, 
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(i) i f  G is amenable then E(G ~) = 1/]G], where 1/IG I is defined to be 0 i f  

lal  = 
(ii) i r a  is non-amenable then 1 - n <_ %(G ~) < O, with E(G ~) = 1 - n i f  and 

only i f  G is free of rank n _> 2. 

Proof: 

by (10) 

(20) 

If G is finite then any exhausting chain of ~ stabilizes on G. Then 

~,(G~, ) _ 1 -]EX,,t(G)] _ 1 

ICl 

In fact, we see that  for every proper subgraph ~' of 

(21) 1 -]EX~t(G')] <_ O. 
Z0(~') 

E x 6' Since for every Q' e f ( 6 ) ,  [ out( )] is of the same order as ~0(06'), then by 

using F~lner's criterion we obtain from (10) that %(G ~) = 0 when G is infinite 

amenable. 

When G is non-amenable then there exists c > 0 such that for every ~' 6 )~(6), 
X t t IEout(G )]//3o(G ) > c. Then by (10) %(G ~) < - c ,  by letting ~0(~') --~ oo. On 

the other hand, %(G ~) > 1 - n when there exits at least one circuit in G. When 

contains no circuits then G is free of rank n and %(G ~) = 1 - n. | 

If we use (11) for the definition of E(G ~) then by Proposition 2.3 we get the 

following criterion for amenability: G is amenable if and only if for every e > 0 

there exists G' 6 .~(G) such that  

( 2 2 )  > n - 

In other words, G is amenable if and only if for every ~ > 0 there is a finite subset 

S of G such that  ]Sxj ~ S]/[S] > 1 - ~ for each generator xj.  This is easily seen to 

be equivalent to Folner's criterion for amenability ([2]): for every e > 0 and every 

w l , . . . ,  wr 6 G there is a finite subset S of G such that ]Swi n SI /[S  I > 1 - ~ for 

each i. (This also shows that a subgroup of an amenable group is amenable.) 

The value of %(G ~) depends on the presentation G ~ of G. Let us look at the 

following example. Let G ~1 be the presentation of the free group G of rank 2 

with generators x,y.  Then %(G ~1) = 1 - 2 = -1 .  Let G ~2 be obtained from 

G ~1 by the Tietze transformation of adding a new generator x' and a relation 

x' = w. If w = x k for some integer k then %(G ~ )  = E ( G ~ ) ,  as can be seen from 
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the chain of subgraphs whose vertices consist of increasing powers of x. On the 

other hand, if w = x y  then the only simple circuits we get are triangles of the 

form x ' y - l x  -1 (or cyclic permutations of it) and by forming an increasing chain 

of subgraphs the best we can do is adding each time 2 new vertices and obtaining 

a new circuit. Therefore we get that ~(G ~2) : (1 - 3) + 1/2 = - 3 / 2  < %(G~1). 

PROPOSITION 2.4: Let  G '~ = (X] R),  X = { x l , . . . , x , ~ } .  

(i) I f  G ~1 = ( X  U {x'}l R, x' = w ( X ) ) ,  where w ( X )  e (X ) ,  then E(G ~) - 1 <_ 

~-(c ~1) <_ ~-(G"), with ~(C ~,) = ~(C ~) irw = 1. 
I (ii) I f  G a2 = ( X  O { x l , . . . , x ~ } [  R,  x i = xi ,  i = 1 , . . . , n )  then F.(G ~') = 

2F-(G ~) - 1/IGI. 

Proof." (i) The Cayley graph of G with respect to G ~1 is obtained from the 

Cayley graph of G with respect to G ~ by adding the edges in the direction x' 

from each vertex v to the vertex vw.  Thus we can increase /3a(G') by at most 

/30(G'). The result then follows from (11). When G is (finite or infinite) amenable 

then %(G ~1 ) = E(G ~) by Proposition 2.3. One can also see it directly from (10) 

by considering the "thickening" of G ~ to G" by adding to it the outer d-boundary, 
E x '  i~,,~ i o  rG,~ X '  where d = / (w) ,  and noticing that o,~ t t  J /po t  / --* 0, where = X U'{x'}. 

When w = 1 we can make sure that the edges going-out in directions X are the 

same as those going-out in directions X '  and thus obtain %(G ~ )  = E(G~). 

(ii) When G is finite then ~-(G ~2) = %(G ~) = 1/IG l by Proposition 2.3. When 

G is infinite then since the number of out-going edges is doubled we get that  

= = E x ~' G' c f ( G ) ,  i F.(G ~ )  2F.(C ~) as E(G ~ )  - in f6 ,  I o~,t()[/ /30(G') ,  e 

We notice that  by Proposition 2.3 and Proposition 2.4 (ii) we get that  ~(G ~) 

is independent of the presentation if and only if G is amenable. 

When G is finite then ( has, of course, a maximum, and we have seen that the 

maximum is achieved only at the whole graph G of the presentation. We showed 

also that in general (for finite and infinite groups), for every proper subgraph 7-/of 

G there is a subgraph H'  which properly contains 7-I and such that ~(H') >_ ((H). 

We then ask more: does ( have a maximum in case the group is infinite? It is 

quite clear that when G is the free product of a finite group and a free group, with 

a "natural" presentation so that we have generators of the free part which are not 

involved in any relator, ( does have a maximum because no circuit involves the 

generators of the free factor (for more details on the value of ( on free products 

see section 5). Next we will show that in fact this is the only situation where 
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has a maximum. 

Given a presentation G ~ = (X I R), with X = {xa, . . .  , x ,}  and R not empty, 

let c(xi) be the length of a shortest relator in which xi appears (i.e. the shortest 

(reduced) circuit in the Cayley graph which contains the edge xi) or 0 if xi does 

not appear in any relator. Then let c(G ~) = maxi(c(xi)). 

THEOREM 2.5: Let G ~ = (X[ R), IX[ = n. Then one of  the following holds. 

Case h F,(G ~) = 1 - n + ~(~') for some ~' �9 ~(~). Let X' C_ X be the set of 

labels of the edges not going-out of ~'. Then 

(i) i f  X '  = X then g' = ~ and G is finite; 

(ii) i f  X '  = 0 then G is the free group on X ;  

(iii) i f  [X'[ = k, 1 < k < n -  1, then V(G') is the union of  left 

cosets of  the finite subgroup H = Gp(X' )  (which may  be 

trivial) and G = H ,  F where F is the free group on X - X ' .  

does not have a max imum on ~ (~ ) .  Then for every ~' �9 J:(G) Case 2: 

(23) 

Proof'. 

-~(G ~) > 1 -  n +~(G') + 
( c ( a  - 1)Z0(G') 

CASE 1: It suffices to show that  whenever there is a relator involving an edge 

going-out of ~' then E(G ~) > ~(~'). For suppose to the contrary that  E(G ~) -- 

~(~') and that  A = vo, el, Vl, e2 , . . . ,  era, Vo is a simple circuit starting at v0 �9 0F'  

and that  el �9 Ex t (G ' ) .  Note that  m _ 2 since ~(G') is maximal. Then by 

Lemma 2.2 we can add translates of G" along the vertices of A which are not in 

6 '  so that  the resulting subgraph ~" will satisfy 4(6") _> ~(6'). Moreover, if 6"  

does not contain the edge el then by adding this edge to G" we increase ~ - -  in 

contradiction to assumption. To see that  this is indeed possible, let Yk �9 X U X  -1 

be the label of ek. Then we need to show that for every k for which vk ~ V(G'), 

there exists uk �9 V(~') such that ukw~ 1 ~ V(~ ' ) ,  where wk = Y l " " Y k  (here we 

look at the vertices as the group elements they represent). But this follows by 

the assumption that V(6') is not mapped to itself by the map g H gwk. 

CASE 2: Let ~ �9 ~(G) and assume that ~(~/~) > ~(7-/') for every 7-/' _c ~/~, or 

otherwise we will take such a subgraph 7-/' C_ 7-I 5 and get a better result. Then, as 

we have shown above, there exists a subgraph 7-/~, which is a union of translates 
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of 7~,  with Bo(7~i) <_ c(aa)l~o(7"l~o) and with 

1 
(24) ~(7"/I) > ~(7"/~) + 

c(C")Zo(~,)" 

The same process can now be carried out with 7~ and so on, obtaining a sequence 

7~ of subgraphs satisfying 

(25) r > r + 

Thus, passing to the limit, we get that 

(26) -~(G '~) _> 1 - n + ~(7-/~) + 

c(a")%(Wo)" 

1 | 
(c(G ~) - 1)/30(7~)" 

We remark that in case 2 of the above theorem we get in particular, by taking 

G' to be the trivial subgraph, that 

1 
(27) •  a) _> 1 - n +  

(c(C ~ - 1) 

and that there exists an exhausting chain (~/~), 7-/~ E C~-(O), such that 

x i IE,,,,,(~)I 1 
(28) lim sup < n - 1 

, - ~  ~o(~) - ( c ( a  '~) - 1 ) "  

3. Factor groups and subgroups 

When G2 is a homomorphic image of G, with the presentation G~ 2 induced by 

the presentation G ~ then the Cayley graph associated with G~ 2 may be regarded 

as a quotient of the Cayley graph associated with G ~, which implies, as expected, 

that ~,(G~ 2) >_ ~(G~). In fact we have the following. 

THEOREM 3.1: Let G1 be a normal subgroup of G and let G2 = G/G1 with the 

presentation G~ 2 induced by G ~. Then 

(29) -e(a~) < ~ ( a ~ ' ) -  ia2l ia I , 

with equality holding if G1 is amenable. 

Proof'. We may exclude the cases where G1 or G2 are trivial. When G is 

finite the result follows by Proposition 2.3 since ~.(G ~) = 1/IG 1. So assume G 

is infinite. We will prove first the inequality in (29). Again by Proposition 2.3 
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the result is clear when G2 is finite. So we further assume that G~ is infinite. 

Let ~' E C.T(6). We wiI1 show there exists a subgraph ~ �9 3r(G2) such that  

~31(~)/B0(~) _> ~l(~')/~0(G'). Let p: ~ ~ ~2 be the covering map from the 

Cayley graph of G '~ onto that of G~ 2. Regarded as a topological space, G' 

decomposes into a finite number of subspaces s where each s is in a different 

sheet, that is the map PIE:: s --* s is bijective and continuous but not necessarily 

a homeomorphism. Let ~" C_ ~' be a collection of vertices and (open) edges 

such that  the map Pt~" is injective and onto p(G~). In particular, ~o(G") = 

~30(p(G")) and ~1 (~") = ~1 (p(G")) (we count here open edges, i.e. not including 

the endpoints). If ~" = G' we are done. Otherwise, we take G'" --- G' - ~" 

(which is not necessarily a subgraph) and continue as before. That is, at this 

step we look at the subgraph p(f~'") and a collection of vertices and edges of ~"'  

which is mapped injectively onto it. We continue until we cover the whole of 

G', and by the finiteness of G ~ the process terminates after finitely many steps. 

There is one thing left to be checked: that p(~'") and the following projections 

are subgraphs, i.e. that they are closed: for each open edge the corresponding 

initial and final vertices are also included. But this follows from the fact that if 

v �9 V(p(~')), and e �9 E(p(G')) is an edge with v being its endpoint, then there 

are at least as much vertices in p- 1 (v) (each in a different sheet) as there are edges 

in p -  l (e). By the way we constructed the sequence of subsets of ~',  this property 

holds throughout the whole process, thus in each step the projected subspace is a 

subgraph. Since we covered G' entirely, at least one of these subgraphs G~ �9 .T'(~2) 

satisfies ~31(~) /&(~)  _> ~l (~ ' ) /&(~ ' ) .  This is true for every ~' �9 C.T(~), thus 

~.(G '~) _< ~(G~ 2) by the second definition in (13). 

Suppose now that G1 is amenable. Then we need to show that %(G ̀~) = ~(G~ 2) 

in case G2 is infinite, or that G is amenable in case G2 is finite. Let X be the 

generating set of G ~ and let G, G2 be the Cayley graphs associated with G~ G~22 

respectively. Given e > 0, let ~ �9 C.T(~2) such that 

E x 
(30) 1 - [  o~,(~2)1 

~0(~)  > ~ ' ( ~ )  3" 

Assume also that ~;~ is induced, contains the vertex 1, and that ~;~ = ~;~ in case 

G: is finite and otherwise/~0(~) > 3/e. Let "/2' �9 C)r(~:) be a spanning tree of 

G~. Each vertex of T~' is then assigried a specific element of G (of which we make 

use in (3!) below). T~' is embedded as a tree T'  �9 CY(~), T '  C_ p-~(T~') (p the 

covering map) with the same vertex and edge labels. Then we take g;' �9 CY(~) 
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to be the subgraph induced by T'.  Let H1 be the subgroup of G1 generated by 

the set Y cormisting of the non-trivial elements 

(31) y , , ,  = vx (p(vx ) )  -1 # 1, v �9 V ( T ' ) ,  x �9 X ,  p(vx)  �9 V(T ' ) .  

If Y is empty we take H1 to be the trivial group. Let 7"/1 be the Cayley graph of 

H1 with respect to Y, and let "]-/~ E C~(H1) with 

y l ~ I 
1 -IEo~t(F/1)t ,3o(g~) 

(32) go(X~) > 3 

Such a subgraph exists by the amenability of H1. Let ~" C jc(6) be the subgraph 

induced by (the disjoint union) Ugev(~'~)gG' (we look here at g 6 V(?-/'l) as an 

element of G by writing each y E Y with the generators X of G). Let now 
X ir e E Eo~t(~ ) be an edge labeled with x E X and starting at gv C V (~" ) ,  

X i g �9 Y(?-/~), v �9 V(T'). Then either p(e) �9 Eo,,t(g2), or else p(e) joins v = p(gv) 

and u = p(gu),  for some u �9 V ( T ' ) .  Then 

(33) gvx  = gy,,.~p(vx) = gy~,,~u. 

Y ! That is, e is the unique edge corresponding to an edge e' E Eo,,t(7"tl) that starts 

at g and is in direction y..~, and this correspondence is 1-i. Then we have 

(34) 
E X  H 1 - I  o~,(g )1 IEo=,(G2)I § IEo=t(~/~)l) 1 - ( / 3 0 ( 7 / I )  x , Y , 

eo(r e0(xl)z0(~) 
_ E x , 1 I o~t (~2) ]  1 -IEoY=t(~)l 1 - + 

I ! ! e0(~) eo(x~)Z0(9=) Zo(G2) (1 1) 
> ~ ' ( ~  IGI Ibl - r 

E X i since G is infinite and I o,,t(g2)l = 0 if G2 is finite. That is, "2(G~ _> ~(G~ 2) if 

G2 is infinite, and ~(G ~ > 0 if G2 is finite. By the the inequalities in the other 

directions - -  these are equalities. II 

COROLLARY 3.2: I f  G ~ ~ ~2 = G 1 ><IG 2 and G1 is amenable then 

(35) e (G~ P'(G~2)- IG=I IGI " 

P r o o f  By Proposition 2.4 we may assume that the presentation G~ 2 is induced 

by the presentation G ~ by adding the generators gi of G~ '~ and the relations 

gi = 1 for every i. Then the result follows immediately by Theorem 3.1. 1 
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Another corollary to Theorem 3.1 is the known fact that if both G1 and G2 

are amenable then G is also amenable. 

The proof of the first part of Theorem 3.1 implies the theorem of Lubotzky 

and Weiss (Theorem 3.1 in [10]) that an infinite family of finite quotient groups 

Gi of a finitely generated amenable group G is a non-expander family. In fact, 

the theorem of Lubotzky and Weiss says a little more: if G ~ is a presentation 

of G and G~ are the Cayley graphs of the induced presentations of the quotient 

groups Gi, then for every e > 0 there exists j such that Gj is not an e-expander. 

This means there is a subgraph G' of Gj with f~0(G') <_ ]Gj]/2 and such that 

the outer boundary of ~' is of size less than e~30(~'). We may as well look at 

]EXt(G')] instead of the outer boundary. But when G is amenable then for 

every e > 0 there exists a finite subgraph G" of the Cayley graph of G such that 

[EXt (~")]/fl0 (~") < e. When the order of a finite quotient group Gj of G is then 

large enough (at least twice the cardinality of ~"), then, as shown in the proof of 

Theorem 3.1, the image of G" in the Cayley graph Gj of Gj contains a subgraph 

G' which satisfies the above inequality (using the equivalence of definitions (10) 

and (11) of ~). In fact, the proof given in [10], although different from ours, also 

uses Folner's criterion for amenability, so in this sense there is no great difference. 

A minor remark: whereas in [10] the result for a quotient group is about being 

(2e)l/2-invariant, we show it is e-invariant, giving a slightly better bound (this 

does not affect amenable groups where e can be chosen arbitrary small). (The 

reader who is interested with this subject of expanding graphs is referred to [11].) 

Example 3.3: We have seen in Theorem 3.1 that equality holds when G1 is 

amenable. But G1 may be non-amenable and still ~,(G ~) = -2(G~2). For 

example, let G = H ,  H �9 K where H is a 2-generated finite group and K is 

free of rank 2. Let K1 be a normal subgroup of K such that K/K1 ~- H, let G1 

be the normal closure of K1 in G, and let G2 = G/G1. Then G2 - H �9 H �9 H 

and by Corollary 5.5 (i), ~(G) = ~(G2) although G1 is non-amenable. This 

situation does not happen when considering the spectral radii R, R2 associated 

with symmetric random walks on G, G2 respectively, where R -- R2 if and only 

if G1 is amenable (see [S], Theorem 2). 

Definition 3.4: Let G ~ be a presentation of G with a generating set X. Let T ~ 

be a Schreier transversal for a subgroup G1 of G with respect to G ~. Then 

a Schreier  genera t ing  sys tem Y for G1 with respect to T ~ consists of the 
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non-trivial (in G) elements of the form 

(36) Yv,x=vx(p(vx)) -1, v e T ,  x e X ,  

where p is the coset map. Notice that the Yu,x are not necessarily distinct elements 

of G. 

PROPOSITION 3.5: Let G ~ be a presentation of a group G and let G~' be a 

presentation by a Schreier generating system of a subgroup G1 of G of finite 

index. Then 

(37) -~(G?') <__ [G: Gtl-~(C~ 

Proo~ If G is finite then - ( G  1 ) = [G : G1]~.(Ga). Assume that G is infinite. 

Let X be the set, of cardinality n, of generators of G% and let Y be the Schreier 

generating system of G~ * , which is of cardinality <_ 1 + [G : G1 [(n - 1). Let G, ~1 

be the Cayley graphs associated with G a, G~" respectively. Let T'  E C3r(O) be 

the Schreier tree by which Y is defined, and let ~' E C3r(O) be the subgraph 

induced by T'.  Given e > 0, let ~ E C Jr(G1) satisfy 

-IE,,,,t(G,)I > e(G~, ) _ IV: Glle, (38) 1 Y ' 
~0(Gi) 

and let G" E ~'(G) be the subgraph induced by Ugev(#'1) gG'. The edges EXt(G '') 

are in I-I correspondence with the edges E~t(G~). Then 

1-lEXt(~")[ 1- Y ' [Eo~t(~l)l e(a~1) 
(39) /~o(G') = IG:GI[~(G[) > [G:GI[ e. 

Thus we showed that 

(40) -2(G~") _ [G: GII-~(G~). | 

For example, when G is free then we get an equality in Proposition 3.5. 

4. Direct products 

THEOREM 4.1: Let G~' be presentations of non-trivial groups Gi, for i = I, 2, 

with disjoint generating sets of cardinalities ni respectively, and let G ~ be the 

induced presentation of G = G1 x G2. Then 

( 1 1 1 )  
(41) .~(G ~) = E ( G ~ " ) + E ( G ~ ' ) -  ]-~1[ + [a2--- [ [E I . 
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Proof." The claim is true when both G1 and G2 are finite, because then 

1 
(42) F.(G") = ~-~. 

When at least one of the groups is infinite we will show first that (41) is an 

upper bound for 4"(G~). Suppose that G' E C~c*(~), where G is the Cayley 

graph of G. Then 6~ is the union of the subgraphs 7-/], 7-/5, where 7-/~, i = 1, 2, 

is the subgraph generated by the edges with labels in Xi U X/--1. We may also 

assume that both ~ are not empty, because otherwise we can obtain at most 

max(E(G~ ~) - n2, E(G~ 2) - nx) which is less than or equals the right hand side 

of (41). Then 

#(~') - (nl + n2) _< (p(Ul )  - n,)  + \ / 3 o ( 7 ( ~ )  n2]  �9 (43) 

By (11) 

(44) 

and 

u ( u l )  - nl  < ~(a?~),  

(45) /31(7-/5) n~ < min(E(G~2),0). 
Zo(n~) 

Therefore, by symmetry, we get from (43) that 

(46) E(G ~) < min(E(G~ 1 ), E(G~2), E(G? 1 ) + E(G~2)). 

But these bounds are exactly the ones that appear in (41) in case at least one of 

the groups is infinite. 

It remains to show that (41) is really achieved. Given e > 0 then for i = 1, 2 

of G i , satisfying let 7~i E C9~(~), where ~i is the Cayley graph ~ 

(47) #(7-/i) - ni > ~ - ( G T ' )  - "~. 

Suppose also that  if Gi is finite then "Hi = ~i and otherwise/3o(~i) > 4/e. Let 

G ~ be the subgraph of ~ which is the cartesian product 7ix • 7~2. Then 

#(6 ')  - (nl + n2) ---- /~l(~'~X)/~0(~'~2) "~-/~1(~'~2)/~0(~'~1) ~t- 1 _ (hi + n2) 
/3o(~tl)Zo(~t2) 

( 1  1 ) 
(4s) = ( u ( ~ l )  - ,~ )  + ( . ( ~ )  - n~) - ~o(~-----) + ~o(~-----3 ~ o ( ~ ) ~ o ( ~ )  

1 1) 
and the proof is complete. | 
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5. Free  p r o d u c t s  

Let us look at what happens with the computation ofE(G ~) for free products. We 

recall that the decomposition of a group G into non-trivial freely indecomposable 

factors is unique, up to isomorphism of the factors, as follows by the Kurosh 

Subgroup Theorem. Such a decomposition contains finitely many factors when G 

is of finite rank, and in fact, by the corollary to the Grushko-Neumann Theorem, 

if G = G1 * G2 then rank(G) = r ank(Gl )+  rank(G2) (see [12], p. 178). The 

following expression plays an important role in computing the value of .~(G~ 

Definition 5.1: Let G ~ be an n-generated presentation of a non-trivial group G. 

If ~1 e ~"(~)  let 

(49) 

Then we define 

(50) 

, ; ( G ' ) -  ~ ( ~ ' )  
~ ( ~ ' )  - 1 

k~(Gr sup ~b(~') 

and 

(51) ~ (C ~) = 1 - n + ~(C~ 

In contrast to the situation with ~, it may happen that for some finite subgraph 

G' of an infinite graph G we have O(G') > ~b(G") for any other non-trivial finite 

subgraph G I' (e.g. when G is the free product of cyclic groups of orders 2 and 

3 and g; achieves a maximum on a subgraph of size 2). We call a presentation 

r educ e d  if none of its generators equals the identity element in the group. Since 

removing such "redundant generators" does not change the value of .E(Ga), no 

loss of generality is caused when assuming (as we do in Theorem 5.3) that the 

presentations are reduced. We say that  a presentation G ~ = (X[ R) is m i n i m a l  

if for every proper subset X'  of X,  Gp(X')  r G. (Here Gp(X')  is the subgroup 

of G generated by XL) Note that  when G is a finite non-trivial group which has 

an n-generated minimal presentation then IGI _> 2 n (by induction on n). 

THEOREM 5.2: Let G ~ = (X I R) be an n-generated minimal presentation of a 

non-trivial group G. Then 1 - n <_ ~(G a) <_ 1. Moreover, 

(i) i f  G is finite then ~(G ~) = n/([G[ - 1), with ~(G ~) = 1 i f  and only i f  

I a [  = 2, 

(ii) if  G is infinite then ~(G ~) <_ O, with ~(G ~') = 0 if and only if  G is amenable 

or G ~ is 2-generated and one of the generators is of order 2. ~(G ~ = 1 - n  
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i f  and only if  G is free of  rank n >_ 2. 

Let H = Gp(Y), Y C_ X ,  satisfying [HI = min{[Gp(X')[}, where X '  C_ X 

and [X'[ = max{IX"[: X"  C_ X, [Gp(X")[ < oo}. Then 

(52) @(G '~) = max(Z(G~), tI'(H~)), 

where ~ ( H  ~) is calculated as in (i). 

Proof'. 

(53) 

Let G be the Cayley graph of G% 

1 + (n - 1)&(r -[EX.t(G')I 
@(C a) = 1 - n + sup 

n -  [EXt(G')[ 
sup 

Therefore, ~ (G ~) <_ 1 if and only if 

(54) E x ~' [ o,~t( ) l > n + l - ~ o ( G  ') 

for every G' 6 C$-*(G). Assume that  X = {x l , . . .  ,x ,} ,  and X'  = { x l , . . . , x k } ,  

0 < k < n, is the set of the labels of the edges no t  going-out of G'. If k = 0 then 

IEXt(G')l _> n and ~(G a) _< 0. Otherwise, G' is the union of a finite number of 

left cosets of Gp(X').  Since the presentation is minimal we have 

(55) ~o(G') >_ [Gp(X')[ >_ 2 k. 

Hence 

(56) IEXt(G')] > n - k >_ n - (2 k - 1) > n + 1 - ~o(~'). 

Suppose that  G is finite. We will show that r achieves its maximum on G. 

Let G' e C.T'*(Q) satisfy r _> r for every 7-/ 6 C.T*(G) contained in G'. 

Let ~" # G' be a left translate of G' such that V(~' N G") is not empty, and let 

7/' = G' U G". Then 

2 ' ~" )  (57) r  > &(G ) - Z~(~' n >__ r 1 6 2  
2Zo(G') - ~o(G' n ~,,) - 1 

where the right inequality comes from 

a c 2a - c a 
(58) b - 1  > d - 1  " " 2 b - d - 1  - b - 1  

with all denominators positive (the case where G' meets G" in a single vertex 

leads to an equality in (57)). 
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It is left to examine the case where for every translate ~" of g ' ,  ~" ~ ~', 

V(g ~ N ~") is empty. This means that  no edge going-out of ~' has the same 

label as that  of an edge of G'. Thus ~' is isomorphic to the Cayley graph of 

H = Gp(X ' ) ,  IX'l = k, and by (53) 

k 
(59) r  = k - 1 + [HI-----Z~_ 1 < k. 

If H is then a proper subgroup of G and xj ~ X'  then the subgraph IH' which is 

isomorphic to the Cayley graph of H'  = Gp(X '  u x j )  satisfies 

k + l  
(60) r  = k + ~ > k > r 1 6 2  

I H ' I -  1 

We have shown that r  _< r  for every subgraph ~' E C~'*(G). Hence 

n 
(61) r  = 1 - n + r  - IG I _ 1" 

Since by the minimality of the presentation Igl _ 2 ~ then ~(G ~) = 1 if and only 

if G is of order 2. 

Suppose now that  G is infinite. If r  does not have a maximum on C~'*(G) 

then ~(G ~) = %(G ~) since Ir - ~(~')1 ~ 0 as &(G') ~ oo. The same is 

true when r  does have a maximum but there is no bound to the size of G' 

on which r achieves its maximum, e.g. when G = H �9 H and H is finite. In fact, 

by Corollary 5.5 (vii), when G = H * H then @(G ~) = @(H~), and if 7 / i s  the 

Cayley graph of H, embedded in G, then when we adjoin m translates of 7 / t o  

form/C E C~'* (G), each translate intersecting the previous one in a single vertex, 

then 
(62) r = m/32(7/) = ~b(7/). 

- - 1 )  - 1 

When none of the above occurs then ~b achieves its maximum on some G ~ E 

6~*(6),  which is isomorphic to the Cayley graph of H = Gp(X'), ]X'] = k < n. 

Then by (59) 

(63) r = l - n + r = l - n + ( k  - l + lH~-___ l ) 

k 
= k - n + - - < O .  

I H I - 1  - 

In fact, we see that when G is non-amenable then @(G ~) = 0 if and only if G ~ is 

2-generated and one of the generators is of order 2. When G is infinite amenable 

then @(G ~) = 0. 
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We conclude that for both finite and infinite groups G, if H = Gp(Y) ,  

Y C_ X, satisfies IHI = min{IGp(X')l},  where X' C X and IX'l = 

max{IX"I: X "  C_ X,  IGp(X")I < oo}, then 

(64) k~(G ~) = max(--(G~), ~(Ha)) ,  

where gt(H ~) = m - 1 + m / ( I H  I - 1), with m being the number of generators 

of H ~. 

Finally, it is clear that ~(G ~) = 1 - n if and only if G is free of rank n > 2. 

| 

When the presentation is not minimal the assertions of Theorem 5.2 do not 

hold. For example, i f G  ~ = ( x b . . . , z ,  d xl = x2 . . . . .  2,~, z~ = 1) and n _> 2 

then k~(G ~ ' ) = 2 n - 1  > n .  

THEOREM 5.3: For each i, 1 < i < r, r >_ 2, let G'~ ~ = (Xil Ri) be a reduced 

ni-generated presentation of a non-trivial group Gi whose Cayley graph is Gi. Let 
r a m = (U[=, x , I  U,=, Ri) be the induced n = E l = ,  hi-generated presentation of 

G = G1 * G2  * " "  * G r .  Assume a/so, without loss of generality, that ~(G~:)  > 

~(G~ 2) > . . .  > ~(GT~), and let G '~ be the induced presentation o: G1 * G2. 
- -  - -  1,2 

(i) I:~(a~') = - - ( a ? ' )  then P . ( a  o)  = 1 - n + - - ( a ? ' ) .  

(ii) It" ~(G~") = O2(H~') > ---(G~"), where H1 < G1 is a finite subgroup 

generated by ]r~ C_ X1 as in Theorem 5.2, then 

- ~  ( (65) ~(G ~) = 1 - n + _ ( a L 2  ) = 1 - n + m a x  - - (G~") ,Z(H~ ' )+  ~(a~')~ 
IHll  ] "  

Proo[: Let • be the Cayley graph corresponding to G ~. Given e > 0 let 

~' E C~'* (G) satisfying 

(66) ((G') > E(G '~) - r 

9'  has the form G, = [.Ji "Hi, where each "Hi is the disjoint union of ki > 0 

subgraphs 7"/i,j E C~'*(Gi), j = 1 , . . . ,  ki, ~i being the Cayley graph of G~'. We 

say that such a subgraph 7/i,j is of type i. Starting from some "Hi0,j0, ~' can be 

constructed inductively, forming a tree-like structure, by adding at each stage one 

of the subgraphs 7"/i j ,  which meets the subgraph constructed up to that stage 

at a single vertex, since there are no other simple circuits except the ones in the 

subgraphs ~i , j  (this is where r comes into the picture). This implies that 

X--.~ X--, k, 
Z[=I &(~h) ~ = 1  ~j=~ &(~t~j) 

(67) ~(G:) = E[=I  ~o(~'/i) + 1 - E l = ,  ki = 1 + E[= l  E/=,(~o(k' ~i, j)  -- 1)"  
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By the form of (67) we see that an upper bound for ~(G ~) is ~ ( G ~ ) ,  and by 

using only subgraphs of type 1 and 2 we get a lower bound S(G ~) >_ k~(G~2). In 

case kO(G~ '~) -- g2(G~ 2) then F.(G a) = k0(G?~). We may then assume that G? ~ 

is involved in G ~ when e is small enough. We may also assume that except from 

G~ ~ , G~ involves edges from other G~' (otherwise we have a connected subgraph 

7 / o f ~ l  and we can take two copies of it joined by an edge from some Xi, i r 1, so 

that ~(7/) is not changed). We look at the decomposition of G ~ into the subgraphs 

7/i,j as above. Then we reconstruct ~(~)  in the following way. We start from 

a subgraph ~l,jo of type 1. Then we add the subgraph of G ~ consisting of some 

~i~ 5~, of type il r 1 and all the new subgraphs (not including the one we started 

with) of type 1 joined to it (and there may be none of them). We continue in 

an inductive way, so that at the m-th stage we add some new 7-/i,,,j~, of type 

im ~s 1, which is joined to the part constructed up to that stage, and all the new 

subgraphs of type i joined to 7/~.~,j,~. We finish after we cover the whole of ~ .  

We show now that there exists a subgraph ~" of G, decomposed into copies of 

only two subgraphs 7-/ C_ G1 and 7t' C_ 65, such that ~(~") _> ~(~'). First we 

notice that  if for some 1-lim,j.~, im r 1, the number of subgraphs of type I joined 

to it is less than/~0 (7-/i~,j,~) then there are subgraphs of type 1 that we can add 

to it so that ~ does not decrease since ~(G~ ~) > kO(G~') for every i. So let us 

suppose that  indeed each such 7/~,,,j,, is joined to ~3o(7/i,,,j.~) subgraphs of type 

1. Let Hl,jk, k = 1 , . . . ,pro  = 13o(7/i,,,j,,) - 1, be the new subgraphs of type 1 

added at the m-th stage in the reconstruction of Gt. That is, at that stage ~3~ is 

increased by 

pva 

k=l  

and f~o is increased by 

pr~ 

(69 )  = 
k= l  

Since ~(G~ 2) > ~(G~') for every i > 2, then there exist finite connected sub- 

graphs 7-/~ of type 2 and 7/~ of type 1, such that 
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(70) ~ ( ~ " )  + - -  

> (Zo(~,#~) - ~)&(~,#~) + &(~,~,#~) 
- (&(ni . , , j . , )  - 1)3o(H~,i~) 

for every 1 _< m _< t = ~[=2 ki and 1 <_ k <_ p,~ (first choose H',~ such that 

r  _> r  for every m, and then an appropriate H~).  Hence it follows 

that 
r am 

(71) ((~/%) +/3o(7~-------) -> b---~ 

(as seen after clearing denominators). Let 7"/6 C~(~I) ,  "H' 6 C~'(G2) such that 

r  r  
( n )  ~(~) + ~ > ~ ( ~ " )  + ~o(~"-------] 

for each m = 1 , . . . ,  t. By the last two inequalities the subgraph ~" constructed 

by starting with :H],jo and adjoining t times the subgraph consisting of a copy of 

7-l' and (3o(~')  - 1) copies of ~/satisfies 

(73) ~(~") _> ~(~'). 

Since e was chosen arbitrarily, we get by the form of G" that 

- n + sup (~(7"/~) + --'(C-) 1 
~ ec~(g~ ),~'2 ECt(g2) \ 

,~(aT)~ 
(74) = 1 - n + sup ~(IL/~) + 

= 1 - n + -(G?,2).  

~o(~))  

Let us define r  on C~({~l) by 

r = ~ ( ~ i )  + # ( c ~ ' )  
~o(~i) 

(75) 

Thus we need to find 

(76) -Z(G~)= sup ~(~). 
nl ecY(gl) 

If ~(G~ 1) = ~(G~ 2) then as we have seen E(G ~ = ~(G~ ~) = ~(1), where 1 
is the trivial subgraph. Also, when .~(CT' ) = ~(a~') then ~(G') = E(G~') 
because ~(G ~) = k~(G~*) by (67) and E(G a) > F.(G~*) by the embedding of 
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61 in ~. When --(G~ 1 ) < ~(G~ 1) but an arbitrarily large subgraph 7"/~ can be 

chosen without decreasing ((?/i) then we get that E(G") = E(G~ 1 ) as the second 

summand in the expression defining ~(~/i) tends to zero when ~0(~/i) ~ oc. It 

remains to check the case where ~ achieves its maximum on a finite number of 

members of C.T(GI ) .  Let ?/i be maximal (with respect to the number of vertices) 

among these subgraphs. We will show that H i is isomorphic to the Cayley graph 

of a finite subgroup H1 of G1 of the form described in Theorem 5.2 (ii) on which 

r achieves its maximum. For we are given that 7/I satisfies ((~/~) > ~(H,) for 

every 7-l' E CY(~) which is contained in ?/~. Suppose there exists Hi ~ # ?/~ a 

left translate of ~ such that ~ ~ H" # 0. Let 7-/1 = Hi U H~'. Then 

(77) r  > 2&(~i)  - & ( ~ i  n ~i') + ~ (G~)  > r 
- 2 & ( U l )  - & ( 7 / i  n U i ' )  - 

where the right inequality comes from 

a + ~l c--}- fft 2a - c + ffl a -t- ~ 
(78) ~ > ~ r  2 b -  d -> - - - - ~ '  

with all denominators positive. But this contradicts the maximality of ?/i. Thus 

the set of labels of the edges of ~/~ is disjoint from the set of labels of its outer 

edges. This means that H i is isomorphic to the Cayley graph of a subgroup 

of G1. We need to show that r too achieves its maximum on 7~ i. Recall that 

we are in the case where ~(G~') > --'(G~), and so r achieves its maximum on 

some subgraph 7/1 which is isomorphic to the Cayley graph of a finite subgroup 

HI < Gl. Let ]C1 6 C.T*(G~) be isomorphic to the Cayley graph of a finite 

subgroup K~ < Gx. Thus ~(H~ ~) > ~ ( K ~ ) .  If IHI[ < IK~I then since for finite 

groups 

(79) k~(H?*) > ~(K~') ~=~ E(HT' ) >_ .E(K?'), 

we get that 

_ _  ~(G~ ~) = r (80) ~(?/,) = E(HT' ) + k~(a~) > E(K~') + - -  

I H ,  I - I K ,  I 

So assume IH, I > IKll. Then ~p(~/,) _> r is equivalent to 

(81) ((H1) + ~(H1-----) -> ((K1) + ~o(~1------~" 

Since r --~ ~I/(G~ 2 ) we have 

(1 1) 



308 A. ROSENMANN Isr. J. Math. 

That is 

(83) 

1) 
-> v ( a ~ )  1) Z o ( ~ )  " 

~(~t'/1) ~- ~(~'~1) + ~I/(a~2~) ~ ~(K~I) + tI/(a~2""--) - ~(K~I)- 
fl0 (~'~1) fl0(K~l) 

We conclude that if H1 is a finite subgroup of G1 (G1 may be finite or infinite) 

generated by some set 111 _c X1 satisfying 

(84) [HI[ = min{IGp(X~)l: X~ C_ Xl,  

IXll = max{IXI'l: X7 c Xl ,  lap(XI')l < ~ } }  

then 

(85) E(G ~) = 1 - n  + max (E(G~I),E(H~I) + gJ(G~2----~)) 
[HI[ " 

If, on the other hand, Gp(X~) is infinite for every X~ C_ X1 then -~(G ~) = 

1 - n + ---(a?l). m 

Example 5.4: Let G = Gx * G2, where G1 = C2 * C3 (Ci the cyclic group of 

order i) and G2 = C4, with all cyclic factors single-generated. Then 9(G1) = 

ffl(C2) = 1, @(C2) = 1/3, E(G1) = E(Cz) + ~(c3)/IC~1 = 1/2 + 1/(2.2) = 3/4, 

and E(G) = Z(G1) -- 3/4 > 2/3 = 1/2 + 1/(3.2)  = E(C2) + ~(G2)/IC2I. 

On the other hand, suppose that G1 = C2.C4, G2 = C3 and G = GI*G2. Then 

~(G1) = 1, ~(G2) = 1/2, E(G1) = 1 /2+1/ (3 .2 )  --- 2/3 and Z(G) = 3/4 = 1 /2+  

1/ (2 .2 )  = 1/z(c2)  + ~(G2)/IC21 > Z(Gx). We see that when ~(Gx) > E(G1) 

then either of the possibilities for E(G) that are stated in Theorem 5.3 can occur. 

In the following corollary the results either follow immediately from 

Theorem 5.3 or are already stated within the proof of Theorem 5.3 or follow 

from the arguments there. Therefore only a partial proof is given. We further 

assume that  the presentations are reduced. 

COROLLARY 5.5: Let G = GI*G2*." .*G~ with the assumptions of Theorem 5.3. 

Then the following claims hold. 

(i) ~(G~ *) _< E(G") <_ ffg(G~l). 
(ii) ~(G ") _ max~{=(GT')}. 

z ( a  ~) = --(a? 1 ) if  
(a) z ( a ? l )  = ~ ( a ? , ) ;  or 
(b) Gp(X~) is infinite for every X~ C_ X1, in particular if G1 is torsion- 

free; or 
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(c) ( ( ~ )  does not have a maximum o n  -~ ' (~1)  and (c(G~ 1) - 1)~(G~ 2) _< 

1; or 

(d) ~ ( K ~  1 ) _> ~(G;~),  where K1 = Gp(ZI), Z~ = X~ - Y~ is non-empty 

and Y1 c_ X1 generates a finite subgroup H1 for which ~(G~ ~) -- 

�9 (H~ ~) > E(G?~). 

_ - v ' r  ~-(G ~ ~ with equality holding if and only if  either (iii) E(G") < 1 r+z_ . , i= l_ t  ~ J, 

G2 is free or G1 ~- G2 ~- C2 and G3 (if exists) is free. 

(iv) -~(G") = nl - n if G1 is infinite amenable. 

(v) E(G") = E(G? ~) + ~ --- nx - 1 + ~ if  e l  is finite. 

n21G21 if  G1 and G2 are finite and the presentation -E(G a) = nl - 1 + Iall(IG=l-l) 

of G2 is minimal. 

1 if all the factors are (finite or infinite) cyclic (vi) -~(C") = 1 - r + l a ~ , ( 1 - ~ )  

and single-generated. 

(vii) kO(G") = ~(G?~). 

Proof'. (ii)(c) For every e > 0 there exists 7-/6 C-~'(~1) such that 

(86) E(G '~) _< ((7-/) + e = ~(7-/) + --k~(C~2) + e. 

When ~(~/) does not have a maximum on ~'(~1) (which is the case "in general") 

then by Theorem 2.5 

1 
(87) --(G? ~) _> ~(~) + 

(c(G? ~ ) - 1)j3o(7-/)" 

If, in addition, (c(G~ ~) - 1)~(G~ ~) < 1 then we get from the two inequalities 

that 

(88) -:(G") _< =-(G?')), 

and by the inequality in the other direction this is an equality. 

(ii)(d) Gp(Y1 U Z1) < G1 is a quotient of L1 = Hi * K1 and therefore, by 
r 2 ) Theorem 3.1 E(G? ' )  > E(L? ~) > E(H~' )  + r > E(H~ 1) + Thus, 

- -  - -  [ H I [  - -  [ g l [  " 

by Theorem 5.3, E(G ") = E (G~) .  

(iii)-~(G ~) _< 1 -  r + E [ = I  "~(G~ ~ ) since by (67) 

P r 

= V" (89) ~(~J') ~ ~ -< E ~(7"/i). &(9) 

A necessary condition for equality in (iii) is that for every ~ > 0 there exists 

~' such that for e v e r y  non-free factor Gi, f~0(7-/i)/f~0(~' ) > 1 - e. But  this is 
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possible if and only if there is either only one non-free factor, or there are two 

such factors and each is isomorphic to C2, the group of order 2. 

(iv) If G1 is infinite amenable then E(G~ 1 ) = g/(G~ 1) and therefore ~.(G ~) = 

1 - n + Y.(a  1) = n l  - n .  

(v) When G1 is finite then ~(7/~), 7/~ �9 C~'(G1) achieves its maximum on G1. 

(vi) When Gi is cyclic then E(G~') = (IGil) -1 and ~(G~')  = ( I G i l -  1) -1. 

Then when G ~ is the induced presentation of G1 * G2 we get from Theorem 5.3 1,2 

that 

= ~ 1 1 
(90) ~ ( V ~ )  = l - r + - ( V l , 2 )  = l - r + [-~i~ + (iG2] _ l ) lGl[  

1 
= l - r +  

IGll(i- ) 

(vii) This is also clear by (67). 1 

We see from Corollary 5.5 (iii) that if G is the free product of two non-trivial 

finitely generated groups Gi and G2 then G is amenable if and only if both Gi 

and G2 are cyclic of order 2, because -~(G ~) _< 1 - 2 + -~(G~ 1) + E(G~ 2) and 

-=(G ~) = 0 if and only if E(G~ 1) = E(G~ 2) = 1/2. In fact, this is well known, 

and in this case G is the infinite dihedral group which is the semidirect product 

of an infinite cyclic group and a cyclic group of order 2, and the fact that G is 

then amenable follows also by Corollary 3.2. 

6. T h e  n o r m a l i z e d  balanced cyclomatic q u o t i e n t  

The definition we used for E(G a) says that its value has to be looked for in the 

"best chain" we can find in the graph. If we look on the other hand only on the 

chain which consists of the concentric balls around 1, we get some "averaging" and 

in this case the value we calculate depends on the growth of the group. Indeed, 

the number of vertices in a ball of radius i in the Cayley graph equals r( i) ,  the 

number of group elements whose length (with respect to the presentation) is at 

most i. 

Def in i t ion  6.1: Let G ~ be n-generated and let ~ be the corresponding Cayley 

graph. Let Bi be the (induced) concentric balls around 1 of radius i in ~. Then 

we define the normalized balanced cyclornatic quotient of G ~ by 

(91) O(G ~) = 1 - n + limsup ~(Bi). 
i--*oo 
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Clearly O(G ~) < ~,(G~), and equality holds when G has sub-exponential 

growth (i.e. when the growth function r( i)  of G is not bounded below by some 

exponential function, or in other words lirni...oo r(i) 1/i -- 1), as seen from the 

proposition below. When G is infinite then ~(G")  is between 1 - n and 0. 

PROPOSITION 6.2: The growth of G is exponential if and only if O(G ~ < O. 

Proof'. This follows by having 1 - n + ~(Bi) = (1 - IEXt(Bi)l)/~o(Bi), and 

~(Bi) ,  i = 0, 1, 2 , . . .  is (a representative of the equivalent class of) the growth 

function of G. | 

We say that a non-empty subgraph H C_ ~ has th ickness  > r if 7~ contains a 

non-empty subgraph ~/' such that d(v, 7"/') = r for every v E OH. The supremum 

on all such r is the thickness of ~/. When OH is empty then the thickness of ~/is  

oc. Thus every subgraph has thickness > 0, and it has thickness > 1 if and only 

if every vertex on its boundary is adjacent to an interior vertex. 

We call a subgroup H < F a s u p n o r m a l  subgroup if the maximal normal 

subgroup N of F which is contained in H is no'n-trivial. In the next lemma we 

refer to the length of a shortest word in N, which is the girth of the Cayley graph 

of F / H  in case H is normal. 

LEMMA 6.3: Let H be a supnormal subgroup of the free group F of rank n and 

let m > 0 be the length of a shortest word in the maximal normal subgroup o fF  

contained in H. Then for every finite subgraph ~' of the cosets graph of H with 

thickness > m/2 

2(n- 1) 
(92) ~(r > 

rn((2n - 1 )  1 + m / 2  - -  1)" 

Proof'. Clearly it is enough to show the claim holds for connected subgraphs. 
Let A be a fixed circuit of length m corresponding to an element as in the lemma. 

Let ~ be a connected finite subgraph of thickness > m/2 in the cosets graph 
of H, and let G" be the subgraph of ~ induced in G~ by the set of vertices of 

distance > m/2 from a~ ~. We cover ~" with copies of A, so that each new circuit 
begins in a vertex not covered yet. Part of the circuits may extend beyond ~", 

but not beyond ~. Then 

> (93) 
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since each circuit was counted at  most m times. As for the caxdinality of ~ ,  we 

have 

(94) #/o(G') _< ~o(~") + a~o(O~") <_ (1 + a)~o(G"), 

where 
m/2 

(95) a-- Z ( 2 n -  11 j.  

Therefore 

i=1 

~o(G") 2(n - 1) 
(96) ~(G') _> m(1 q- a)/3o(~") -- m((2n - 1) 1+m/2 - 1)" | 

As an immediate  corollary we have 

PROPOSITION 6.4: Let G ~ = ( X  l R> be a presentation of  a non-free group G 

with [X[ = n. Let m be the length of  a shortest relator. Then 

2(n - 1) 
(97) O(G r > 1 - n + 

m ( ( 2 n -  1)l+m/2 - 1)" 
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